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Abstract:  

Background: Computational Methods in the ‘omics’ era has been a boon in the drug discovery field. 

Bioinformatics and cheminformatics databases and tools complement the successful discovery of 

promising lead compounds in the treatment of several disease conditions including neurodegenerative 

diseases such as Alzheimer’s Disease (AD). However, commercially available drugs in the market to 

alleviate the disease progression in AD patients is sparse. The current research aims to apply an in-

silico approach on multi-therapeutic agents against multi-therapeutic targets through docking studies 

to explore potential lead compounds for AD clinical trials.  

Method: In the proposed research, virtual screening was performed with four US FDA-approved 

control drugs (Donepezil (DON), Galantamine (GAL), Rivastigmine (RIV), and Tacrine (TAC)) for 

mild-moderate-severe stages of AD treatment. The panel of compounds identified through virtual 

screening was subjected to chemical absorption, distribution, metabolism, excretion, and toxicity 

(ADMET) and Pharmacokinetics (PK). The compound with good ADMET and PK score was 

investigated further with molecular docking against the four therapeutic targets involved in AD. 

Ligands showing the highest binding affinity against cholinesterase inhibitors (AChE, BuChE), 

receptor antagonist (NMDA), and β-amyloid peptide (Aβ) were computed.  

Result: It was observed that the compounds Quinazolidinone analogue, 2b, Isoquinoline-pyridine, 1, 

Benzylmorphine and Coelenteramide are the best lead candidates with the least side effects and better 

efficacy.  

Conclusion: The predicted lead candidates are suitable for further investigation in the drug discovery 

pipeline.  
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1. INTRODUCTION 

 Alzheimer’s Disease (AD) is a progressive neurological 
disorder that affects the function of the brain leading to 
memory loss, decline in cognitive functions or learning 
inability. In short, it leads to a situation where patients 
cannot lead an independent life. Around 50 million people 
have dementia across the globe, ~10 million new cases every 
year [1]. Unfortunately, there is no drug available to cure AD 
and the ones available now only slow down the progression 
of neurodegeneration [2]. Moreover, the drugs in various  
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phases of clinical trials for AD are much fewer in 
comparison to various other disease conditions [3].   

Computer aided drug design has been popular in recent 
years in identifying acceptable drugs for various disease 
conditions. Several strategies adopted through multi-
disciplinary approach to drug discovery by the modelers 
have found applications in the computational biology and 
chemistry fields for efficient discovery of hit compounds to 
lead compounds especially in the ‘omics’ revolution period. 
Moreover, in-silico methods can provide impressive results 
in terms of assessing toxicity and evaluating drug likeness 
based on Absorption, Distribution, Metabolism and 
Excretion (ADME) of the compounds [4]. ‘Intelligent drug 
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discovery’ is increasingly adopted by major biopharma 
companies [5]. Hence the number of drugs in various stages 
of pre-clinical or clinical trials have improved significantly 
over the years. As the size of bioinformatics and 
cheminformatics databases have been increasing, in-silico 
studies have gained much attention in identifying lead 
compounds which can eventually be tested in-vitro or in-vivo 
for potential drug molecules. However, understanding the 
key factors involved in AD progression is of great 
significance for successful drug discovery. The knowledge 
of potential druggable targets is one such [6]. Around 26 
potential Alzheimer’s drug targets were reviewed by 
Chaudhary and co-workers (2018); some of the druggable 
targets are well known inhibitors, receptor antagonists, 
amyloid, and neurofibrillary tangles while others are still 
being studied to test their suitability against ligands [6]. 

   Table 1. Approved Drugs of choice  

S. 

No 

Compound Chemical 

Structure 

Mode of 

AChE 

Inhibition 

Application 

1. Donepezil Piperidine 

derivative 

antagonist Alzheimer's 

Disease 

Autism 

2. Rivastigmine Carbamate antagonist Alzheimer's 

Disease 

Lewy bodies 

Parkinson's 

disease 

3. Galantamine Alkaloid antagonist Alzheimer's 

disease 

4. Tacrine Pyridine 

derivative 

antagonist Alzheimer's 

Disease 

The enduring process of traditional drug discovery has 
been superseded by computational studies via virtual 
screening, docking procedures, molecular dynamics, 
machine learning algorithms and so on. Virtual screening 
techniques involving in-silico screening of large compounds 
possessing desirable properties against the targets to 
optimize the compounds has gained attention in identifying 
drug leads in contrast to the experimental set up which 
suffers bottlenecks in terms of cost, time, and effort [7]. This 
screening method utilizes the molecular docking procedure 
wherein the small drug molecules are docked with drug 
targets at the binding sites by finding the correct position and 
binding affinity prediction [8].  

A multi-therapeutic target approach to multi-
functional drug candidates yielded two lead compounds for 
AD treatment against AChE and BACE1 targets which 
werefurther confirmed experimentally [9]. Yet another study 
based on molecular docking led to identifying novel lead 
compounds that were in-vitro tested and confirmed the 
compounds of ethnopharmacological relevance as the 
therapeutic agents against therapeutic targets including the 
Cholinesterase and BACE inhibitors [10]. Onoda et al (2019) 
[11] found a lead compound from Tinospora cordifolia for 
AD by docking ligands and the active site of enzymes. A 
machine learning framework called DRIAD has been 
proposed which identifies potential drug compounds for AD 
which utilize gene expression profiles and US Food and 

Drug administration (FDA) approved drugs [12]. Potential 
lead compounds have been found for the treatment of AD in 
a study utilizing repurposing approach after considering 
antipsychotic drugs against five protein targets [3]. However, 
all of them require wet-lab experiments for final 
confirmation. 

 

2. MATERIALS AND METHODS 

2.1. Virtual screening of ligands 

 FDA drugs used for AD including Donepezil, 
Rivastigmine, Galantamine and Tacrine (Table. 1) [13] were 
used as the control to retrieve similar structures using the 
Swiss similarity tool [14], for the present investigation. The 
tool enables the search against a database of 4788 FDA 
approved experimental drugs. Among the list obtained, the 
top five ligands were retrieved based on the Tanimoto score 
(Supplementary Table.1). Finally, 20 test ligands were used 
for further investigations. 

2.2. Pharmacokinetic (PK) Properties 

 The SMILE structures of the control (4) and test ligands 
(20) were downloaded from Pubchem database [15]. The 
pharmacokinetic properties of the ligands were evaluated by 
swissADME, admetSAR2.0 [16][17][18] and pkCSM online 
web server ([19]).  

2.3. Therapeutic targets  

      Among the various hypotheses for AD [6][8], four 
potential targets for anti-Alzheimer's drug discovery are 
considered in the present study.  

Amongst the options to improve the brain functions of 
AD patients include Cholinesterase inhibitors and N-methyl-
D-Aspartate receptor antagonist [20]. Preventing amyloid 
beta peptide aggregation is yet another significant factor in 
deteriorating the neuronal loss in AD conditions [21]. Hence 
beta amyloid protein assembly is a potential therapeutic 
target of AD [22]. Finally, four potential druggable targets 
namely acetylcholine esterase (AChE), butyl choline esterase 
(BuChE), N-methyl-D-aspartate (NMDA) receptors and β-
amyloid peptide (Aβ) involved in AD were chosen and their 
structures were downloaded from PDB database [23].  

Table 2. Target proteins of AD and their Grid box details 
assigned for molecular docking 

S.

No 

PDB ID Protein 

Names 

Grid Center Grid Size 

1 1P0M Human 

butyryl 

cholinesterase 

x = 136.50 

y = 123.28 

z = 37.74 

x = 39.94 

y = 35.47 

z = 38.53 

2 1QXC Beta amyloid 

peptide 

x= 0.89 

y = -1.28 

z = -1.18 

x= 16.56 

y = 16.75 

z = 17.90 

3 4EY5 Human 

Acetylcholine

sterase 

x= -2.39 

y = -40.08 

z = 33.92 

x= 36.47 

y = 42.27 

z = 39.56 

4 1PBQ NMDA 

receptor 

antagonist 

x= 4.16 

y = 39.39 

z = -17.90 

x= 33.40 

y = 35.47 

z = 29.74 
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2.4. Docking study  

 All the ligand structures were downloaded from Pubchem 
database. The ligands and proteins were minimized and 
pdbqt files suitable for docking were prepared using 
AutoDock Tools (ADT) [24]. Further, AutoGrid was used to 
create the grid box for the target proteins in their respective 
active site region. The parameters such as addition of 
hydrogen, Kollman charges and solvation of the protein 
structures were applied using ADT. The respective grid size, 
grid center and spacing for all the four target proteins are 
shown in the Table. 2. AutoDock Vina was employed for 
docking the ligand structures into the binding pocket of the 
proteins. The ligand with lowest binding affinity was 
extracted and aligned with the receptor for further analysis. 

 

3. RESULTS AND DISCUSSION 

3.1. Physicochemical and toxicity prediction 

 The failure of drug candidates to reach the market is due 
to the unsatisfactory PK property and toxicity prediction. 
Thus, computer-based prediction methods reduce cost and 
time of the candidate molecules to reach the drug discovery 
pipeline.  

 The physicochemical properties such as topological polar 
surface area (TPSA) and molecular weight of ligands were 
determined using the SwissADME web server. All the 
ligands have shown molecular weight >500 Da.  Compounds 
with low molecular weight and low TPSA are predicted to be 
orally bioavailable. Oral consumption is the safest route and 
least expensive way for drug delivery. Also, low TPSA 
(>75) increases the likelihood of promiscuous binding to off-
targets. Almost all the ligands of choice have TPSA below 
75 Å which are considered to be suitable for absorption.  

 Among the twenty test compounds used for prediction, 
TAC5 resulted with low Gastrointestinal (GI) absorption. 
Also, the other ligands similar to Tacrine (TAC1-4) have 
resulted as AMES toxic. Similarly, the test compounds were 
predicted non-carcinogen except RIV5. Ligands such as 
GAL4, GAL5, TAC3 and TAC4 were presented under the 
category II which is moderately toxic and irritating. Apart, 
the other compounds were resulted with acute toxicity 
category III which is determined as slightly toxic and 
slightly irritating. From the log BB predicted values it was 
evaluated that all the test compounds have log BB values 
above 0.7. The log BB value greater than 0.3 is considered to 
cross blood-brain barrier (BBB) and less than -3 are difficult 
to penetrate the central nervous system (CNS). Thus, it has 
been observed that all the test compounds used for the study 
have the potential to cross BBB and CNS (Table. 3). 
Therefore, the value obtained will be useful to schedule the 
dose and volume to be used in the initial framework of in-
vivo animal and human studies.   

3.2. Molecular docking 

The best ligands as lead molecules were selected based 
on the highest binding affinity (Table. 4) values (kcal/mol) 
of the docked complexes. Molecular docking of derivatives 
with AChE receptor protein of AD revealed DON2, DON4 

and GAL2 have highest binding affinity of –11, -10 and -
10.5 (kcal/mol) respectively. Compared to the standard drugs 
used for the study, the clinically approved test ligands have 
shown highest binding affinity with AChE. DON2 has 
substantiated its strong binding affinity to protein by 
establishing four hydrogen bonds with Glu202, Ser203, 
Tyr133 and His447. Besides, it has pi stacked and pi-alkyl 
interaction with TRP286 and TYR341respectively (Fig.1A-
B). Interestingly, fluorine of DON2 is having interaction 
with Trp-86 which is an important residue for choline 
binding. DON2 interacts with the catalytic residues Ser203 
and His447 of the active site of AChE. Therefore, it is 
demonstrated that DON2 can inhibit the catalytic activity of 
AChE.  

 Interaction analysis with BuChE has shown the ligands 
DON4, GAL2, RIV3 and TAC5 have binding energy (>10.8) 
compared to other derivatives. Among them, DON4 has the 
highest binding affinity of -11.2 (kcal/mol). DON4 has 
stabilized the interaction through four hydrogen bond 
interactions (ASP70, Glu197, Pro285 and His438). It also 
has Pi-alkyl, Pi-Pi-stacked and amid-Pi stacked interactions 
with Leu286, Gly116, Phe329, Trp82, and Trp231 (Fig. 1C-
D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Interaction map of ligands with the target receptor 

protein; (A) DON2 interacting with AChE receptor. (C) 

DON4 interacting with BuChE; (E) Interaction of RIV4 with 

NMDA receptor 2D structure; (G) Interaction of GAL2 with 

Aβ-peptide. (B, D, F and H) are the 2D representation of the 

respective proteins.  
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 Similarly, molecular docking of the ligands with NMDA 
revealed RIV4 has the highest binding affinity of -10.2 
(kcal/mol). DON4 is the second ligand with highest binding 
affinity of -10.1. The other ligands GAL2 and TAC5 have 
the binding energy of -9.6 and -9.8 respectively. RIV4 shows 
two hydrogen bond interactions with ASN123 and GLN95 of 
NMDA. Different types of pi interactions such as pi-sigma 
(Thr94), pi-pi (Tyr184, Phe92) and pi- alkyl (Leu146) 
interactions were observed (Fig. 1E-F).  

 

 
Fig. 2. Workflow of in-silico approach 

 

The binding prediction of Aβ-peptide with ligands 

revealed GAL2 and RIV2 showed the highest binding 

affinity of -5.4 and -5 (kcal/mol). DON4 and TAC5 have 

shown binding affinity of -4.7. GAL2 has shown hydrogen 

bonding interaction with Ile32 in the hydrophobic pocket of 

Aβ-peptide. Additionally, GAL2 formed a pi- alkyl 

interaction with Ile31. Eventually, van der Waals interactions 

were observed with GAL2 and amino acids such as Gly25, 

Asn27, Ala30 and Gly33 of Aβ-peptide. Thus, the results 

indicate that such interactions of GAL2 with active residue 

of Aβ-peptide can hinder the aggregation of the peptide 

during pathological conditions (Fig. 1G-H). 

 

4. CONCLUSION 

 Even though the conditions of AD were officially 
described more than a century ago, there is no cure for it yet 
and its treatment remains a challenge. Several strategies for 
AD treatment exist from a molecular druggable target 
perspective. A wealth of cutting-edge research for drug 
discovery has been carried out utilizing multiple therapeutic 

targets based on enzymes/receptors/proteins with drug 
compounds as inhibitors/receptors. In the current study, four 
potential targets (PDB ID: 1P0M, 1QXC, 4EY5, 1PBQ) 
were chosen. Compounds having similar structure of FDA 
approved drugs for various stages of AD treatment were 
obtained to perform molecular docking. Overall, from the 
docking studies following the workflow in Figure 2, it was 
observed that DON2, DON4, RIV4 and GAL2 
(Quinazolidinone analogue, 2b (Pubchem ID: 448890), 
Isoquinoline-pyridine, 1 (Pubchem ID: 6914611), 
Coelenteramide (Pubchem ID: 448487) and Benzylmorphine 
(Pubchem ID: 5362507) respectively) show the highest 
binding affinity with the target proteins involved in AD. 
Moreover, based on the PK and toxicity-based studies, it was 
observed that these ligands are suitable for further 
investigation in the drug discovery pipeline. 

 

CONSENT FOR PUBLICATION  

Not applicable.  

AVAILABILITY OF DATA AND MATERIALS 

The data supporting the findings of the article is available at 
https://www.evernote.com/shard/s650/sh/8b59950e-e88a-
d054-5ea6-
7b1ef8a572a9/7f1d18e5a3b669598b03695a811132e4. 

FUNDING 

The research leading to the results has received funding from 
The Research Council (TRC) in the Sultanate of Oman under 
the Open Research Grant Program (TRC Grant Agreement 
No. BFP/RGP/ICT/19/209).  

CONFLICT OF INTEREST 

 None. 

ACKNOWLEDGEMENTS 

 SSKN1a, SSNM2a, NSc, KGR3a, AMd acknowledge the 
financial support from TRC. RBSb acknowledges RUSA 2.0 
[F. 24-51/2014-U, Policy (TN Multi-Gen), Dept of Edn, 
GOI]. 

SUPPLEMENTARY MATERIAL 

S. Table 1. Compounds identified based on the similarity 

with the approved drugs. 
 

 

 

 

 

 

 

 

 

https://www.evernote.com/shard/s650/sh/8b59950e-e88a-d054-5ea6-7b1ef8a572a9/7f1d18e5a3b669598b03695a811132e4
https://www.evernote.com/shard/s650/sh/8b59950e-e88a-d054-5ea6-7b1ef8a572a9/7f1d18e5a3b669598b03695a811132e4
https://www.evernote.com/shard/s650/sh/8b59950e-e88a-d054-5ea6-7b1ef8a572a9/7f1d18e5a3b669598b03695a811132e4


An in-silico approach to identify potential drug molecules for 

Alzheimer’s disease: a case with four therapeutic targets Letters in Drug Design & Discovery, 2021, Vol. 0, No. 0    5 

 

 

 

Table 3. ADMET properties of the compounds

Derivativ

es  

TPSA 

(Å2) 

GI 

absorption 

Log BB AMES Toxicity Carcinogens Acute Oral 

Toxicity 

DON1 38.77 High 0.9953 Non-AMES toxic Non-carcinogens III 

DON2 58.10 High 0.9592 Non-AMES toxic Non-carcinogens III 

DON3 117.95 High 0.7450 Non-AMES toxic Non-carcinogens III 

DON4 76.82 High 0.9845 Non-AMES toxic Non-carcinogens III 

DON5 78.53 High 0.8336 Non-AMES toxic Non-carcinogens III 

GAL1 62.16 High 0.9382 Non-AMES toxic Non-carcinogens III 

GAL2 41.93 High 0.9980 Non-AMES toxic Non-carcinogens III 

GAL3 68.23 High 0.9723 Non-AMES toxic Non-carcinogens III 

GAL4 41.93 High 0.9974 Non-AMES toxic Non-carcinogens II 

GAL5 38.69 High 0.9929 Non-AMES toxic Non-carcinogens II 

RIV1 23.47 High 0.8664 Non-AMES toxic Non-carcinogens II 

RIV2 32.78 High 0.9926 Non-AMES toxic Non-carcinogens III 

RIV3 65.12 High 0.9468 Non-AMES toxic Non-carcinogens III 

RIV4 95.34 High 0.8769 Non-AMES toxic Non-carcinogens III 

RIV5 69.64 High 0.7176 Non-AMES toxic Carcinogens III 

TAC1 38.91 High 0.9217 AMES toxic Non-carcinogens III 

TAC2 24.92 High 0.9604 AMES toxic Non-carcinogens III 

TAC3 24.92 High 0.9776 AMES toxic Non-carcinogens II 

TAC4 50.94 High 0.9279 AMES toxic Non-carcinogens II 

TAC5 49.84 Low 0.9319 Non-AMES toxic Non-carcinogens III 

 

 

Table 4. Docking of ligands with therapeutic targets 

Compounds Binding affinity (kcal/mol) Molecular 

weight 

(g/mol) AChE BuChE NMDA Beta amyloid peptide 

DON -6.6 -10.4 -8.7 -4.6 379.5 

DON1 -8.7 -10.1 -8.7 -4.6 379.49 

DON2 -11 -11.2 -9.4 -4.4 393.45 

DON3 -7.2 -10.1 -9.6 -5 478 

DON4 -10 -11.2 -10.1 -4.7 394.47 

DON5 -6 -9.6 -9 -4.5 592.77 

GAL -6.6 -10.4 -7.8 -4.1 287.35 

GAL1 -6 -9.8 -7.1 -4.8 423.54 

GAL2 -10.5 -10.9 -9.6 -5.4 375.46 

GAL3 -6.2 -10.5 -7.8 -4.1 453.57 

GAL4 -6.1 -8.7 -7.8 -4.8 301.38 

GAL5 -7.1 -9.6 -8.7 -4.7 314.4 

RIV -6.3 -7.1 -6.9 -3.9 250.34 

RIV1 -6.9 -6.2 -6.1 -3.4 165.23 

RIV2 -8.3 -10.2 -8.9 -5 441.01 

RIV3 -7.4 -10.9 -8.6 -4.8 398.5 

RIV4 -7.9 -10.8 -10.2 -4.6 411.45 

RIV5 -7.5 -8.5 -7.8 -4.7 302.37 
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TAC -8.7 -8.5 -7.7 -4.2 198.26 

TAC1 -7.1 -8.5 -9.1 -4.7 298.81 

TAC2 -8.8 -10.1 -9.2 -5 414.28 

TAC3 -5.3 -8.5 -7.7 -4.1 288.39 

TAC4 -8.2 -8.2 -7.7 -4.1 325.49 

TAC5 -9.3 -10.8 -9.8 -4.7 452.63 
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